Cash Management Policies by Evolutionary Models: a Comparison Using the Miller-orr Model
نویسندگان
چکیده
This work aims to apply genetic algorithms (GA) and particle swarm optimization (PSO) to managing cash balance, comparing performance results between computational models and the Miller-Orr model. Thus, the paper proposes the application of computational evolutionary models to minimize the total cost of cash balance maintenance, obtaining the parameters for a cash management policy, using assumptions presented in the literature, considering the cost of maintenance and opportunity for cost of cash. For such, we developed computational experiments from cash flows simulated to implement the algorithms. For a control purpose, an algorithm has been developed that uses the Miller-Orr model defining the lower bound parameter, which is not obtained by the original model. The results indicate that evolutionary algorithms present better results than the Miller-Orr model, with prevalence for PSO algorithm in results.
منابع مشابه
On the use of multiple criteria distance indexes to find robust cash management policies
Cash management decision making can be handled from a multiobjective perspective by optimizing not only cost but also risk. Nevertheless, choosing the best policies under a changing context is by no means straightforward. To this end, we rely on compromise programming to incorporate robustness as an additional goal to cost and risk within a multiobjective framework. As a result, we propose to c...
متن کاملOn the use of multiple criteria distance indexes to find robust cash management policies
Cash management decision making can be handled from a multiobjective perspective by optimizing not only cost but also risk. Nevertheless, choosing the best policies under a changing context is by no means straightforward. To this end, we rely on compromise programming to incorporate robustness as an additional goal to cost and risk within a multiobjective framework. As a result, we propose to c...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملOptimal pricing and ordering policies for perishable products under advance-cash-credit payment scheme
Recently, market globalization and competition have forced companies to find alternative means to boost sales and revenue. The use of the cash flow is increasingly becoming a viable alternative for managers to improve their company’s profitability in a supply chain. In today’s business transactions, a supplier usually asks a manufacturer to pay via the advance-cash-credit (ACC) payment scheme i...
متن کاملEstimation of Runoff using Modified SCS Models
In recent decades, due to the importance of watershed management programs and the need for adequate information and correct estimation of rainfall and runoff, many conceptual models have been proposed. These models have parameters that must be estimated according to observational data. However, finding the optimal values for the parameters of simulation models has always faced uncertainty. One ...
متن کامل